товары и услуги

Нанесение тонких пленок в вакууме

Наиболее распространенными методами получения тонких пленок различных материалов в вакууме являются методы термического испарения и ионного распыления.
К процессам термического испарения относится испарение: а) из резистивных испарителей (проволочных, ленточных), включая взрывное испарение с применением вибропитателей; б) из тиглей с радиационным и высокочастотным индукционным нагревом; в) с помощью электронно-лучевых испарителей (за счет сфокусированного луча). К процессам ионного распыления относится: а) катодное (диодная система); б) иоино-плазменное (триодная система); в) с помощью сфокусированных ионных пучков; г) магнетронное.

До настоящего времени основным методом получения тонкопленочных ГИС являлось термическое испарение материалов и их конденсация в вакууме (термовакуумное напыление). Достоинствами метода являются: реализация высоких скоростей осаждения материалов в высоком вакууме, простота, отработанность технологических операций и наличие современного высокопроизводительного оборудования. Однако этому методу свойственны такие недостатки, как трудность обеспечения высокой воспроизводимости свойств пленок при осаждении веществ сложного состава, появление брызг расплавленного металла или крупных частиц, трудность испарения тугоплавких материалов, высокая инерционность испарителей и сравнительно небольшой срок использования как испарителей, так и тигля с испаряемым материалом, что создает существенные трудности при создании оборудования непрерывного действия.

Расширение номенклатуры материалов, используемых для производства ГИС, в частности применение тугоплавких материалов и материалов сложного состава, а также стремление перейти к непрерывным технологическим процессам повысили интерес к получению тонких пленок с помощью ионного распыления. Основными достоинствами методов ионного распыления материалов являются: возможность распыления практически всех материалов современной микроэлектроники, в том числе различных соединений (нитридов, оксидов и т. д.) при введении в газоразрядную плазму реакционно-способных газов (реактивное распыление); высокая адгезия получаемых пленок к подложкам, поскольку энергия распыленных частиц выше энергии испаренных частиц; сохранение стехиометрического состава пленок при распылении многокомпонентных сплавов; однородность пленок по толщине, в том числе при осаждении на поверхности, имеющие сложный профиль; очистка поверхности подложек с помощью ионной бомбардировки как перед, так и в процессе осаждения пленки.

Рассмотрим основные методы получения тонких пленок.

Метод термовакуумного напыленияоснован на создании направленного потока пара вещества и последующей конденсации его на поверхностях подложек, имеющих температуру ниже температуры источника пара. Пленка при конденсации формируется из отдельных атомов или молекул пара вещества. Процесс термовакуумного напыления состоит из четырех этапов: 1) образование пара вещества; 2) перемещение частиц пара от источника к подложкам; 3) конденсация пара на подложках; 4) образование зародышей и рост пленки.

Метод получения тонких пленок термическим вакуумным напылением является универсальным и наиболее освоенным методом.

Рис. 10.2. Схема термического напыления.

Рабочая камера вакуумной установки (Рис. 10.2) представляет собой цилиндрический металлический или стеклянный колпак 1, который устанавливается на опорной плите 7. Между колпаком и плитой находится резиновая прокладка, обеспечивающая вакуумплотное соединение. Внутри рабочей камеры расположены: подложка 4, которая закрепляется на держателе 3, нагреватель подложки 2 испаритель 6 для нагрева напыляемых веществ. Между испарителем и подложкой устанавливается заслонка 5, позволяющая в нужный момент прекращать попадание испаряемого вещества на подложку. Рабочая камера откачивается вакуумным насосом. Остаточное давление под колпаком измеряется специальным прибором - вакуумметром. Давление измеряется в мм рт. ст.

Катодное распыление.Конструкция установки катодного распыления (Рис. 10.3)состоит из газоразрядной камеры 1, в которую вводится рабочий газ (обычно аргон) под давлением 1 ‒ 10 Па; катода 2, выполняющего функцию распыляемой мишени; анода 3 и закрепленной на ней подложки 4. Между анодом и катодом подается постоянное напряжение величиной несколько киловольт, обеспечивающее создание в межэлектродном пространстве электрического поля напряженностью порядка 0,5 кВ/см. Анод заземлен, а отрицательное напряжение к катоду подается через изолятор 5. Чтобы исключить загрязнение стеклянного колпака камеры, вблизи катода закрепляют экран 6.

Электрическое поле, существующее между катодом и анодом, ускоряет электроны, образующиеся в межэлектродном пространстве в результате фотоэмиссии из катода, автоэлектронной (полевой) эмиссии, воздействия космического излучения или других причин. Если энергия электронов превышает энергию ионизации молекул рабочего газа, то в результате столкновения электронов с молекулами газа возникает газовый разряд, то есть образуется газоразрядная плазма. Для того чтобы электрон мог набрать необходимую для ионизации газа энергию, ему требуется обеспечить минимально необходимую длину свободного пробега. Только при этом условии электрон, двигаясь без столкновений, способен увеличить свою энергию до нужной величины.

Рис. 10.3.Схема катодного распыления

Образующаяся в результате газового разряда плазма состоит из электронов, ионов и нейтральных молекул рабочего газа. Ионы под воздействием электрического поля ускоряются и бомбардируют катод-мишень. Если энергия ионов превышает энергию связи атомов мишени, то происходит ее распыление. Кроме выбивания атомов с поверхности мишени, ионы способны выбить из нее вторичные электроны (вторичная электронная эмиссия). Эти вторичные электроны ускоряются и ионизируют молекулы рабочего газа; образующиеся при этом ионы бомбардируют мишень, вызывая вторичную электронную эмиссию, и процесс повторяется. Таким образом, газовый разряд поддерживает сам себя и поэтому называется самостоятельным тлеющим разрядом.

С повышением тока, протекающего через газоразрядную плазму, увеличивается плотность ионного потока и интенсивность распыления мишени. При некоторой плотности потока, зависящей от условий охлаждения мишени, начинает проявляться термоэлектронная эмиссия. Ток в разряде возрастает, а сам разряд становится несамостоятельным, приобретая характер дугового разряда. Для предотвращения перехода самостоятельного тлеющего разряда в дуговой высоковольтный источник питания должен иметь ограничения по мощности, а мишень интенсивно охлаждаться.

10.5. Толстопленочные интегральные микросхемы

Толстопленочными называются интегральные микросхемы с толщиной пленок 10‒70 мкм, изготавливаемые методами трафаретной печати (сеткография).

Сущность процесса изготовления толстопленочных микросхем заключается в нанесении на керамическую подложку специальных проводниковых, резистивных или диэлектрических паст путем продавливания их через сетчатый трафарет с помощью ракеля и в последующей термообработке (вжигании) этих паст, в результате чего образуется прочная монолитная структура.

Проводниковые и резистивные пасты состоят из порошков металлов и их окислов, а также содержат порошки низкоплавких стекол (стеклянную фритту). В диэлектрических пастах металлические порошки отсутствуют. Для придания пастам необходимой вязкости они замешиваются на органических связующих веществах (этил-целлюлоза, вазелины).

При вжигании паст стеклянная фритта размягчается, обволакивает и затем при охлаждении связывает проводящие частицы проводниковых и резистивных паст. Диэлектрические пасты после термообработки представляют однородные стекловидные пленки.

Относительная простота технологии при сравнительно низких затратах на оборудование и материалы, достаточно высокая эксплуатационная надежность и другие достоинства толстопленочных микросхем способствуют увеличению их производства и расширению областей применения. Конструктивно подобные микросхемы выполняются в виде наборов резисторов или конденсаторов, а также в виде гибридных микросхем, т. е. могут содержать навесные активные и пассивные компоненты. Широкое применение находит толстопленочная многоуровневая разводка межсоединений в гибридных микросхемах.

Share
Tags :
06.04.2017